If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+100x-80000=0
a = 1; b = 100; c = -80000;
Δ = b2-4ac
Δ = 1002-4·1·(-80000)
Δ = 330000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{330000}=\sqrt{10000*33}=\sqrt{10000}*\sqrt{33}=100\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-100\sqrt{33}}{2*1}=\frac{-100-100\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+100\sqrt{33}}{2*1}=\frac{-100+100\sqrt{33}}{2} $
| x/8x+19=75 | | n(0)=-1(0)+4 | | -2(-5y+7)-y=3(y-3)-3 | | n(-2)=-1(-2)+4 | | 8x^+x+192=0 | | 8x^2+x+192=0 | | c|2=8 | | y-6=48 | | -4w=-289 | | X.3x+10=5 | | 4m^2-7m-36=0 | | 4^(x+8)=3 | | 3y+7=9 | | 3(x–5)+2(14–3x)=7. | | 17r-13=20 | | t/13+11=8 | | 2.1p=8.4 | | 12z+z+5z-11z=42 | | -9.2+3j=28.3 | | x=80+5x | | q+5q-3q=33 | | -2y15=3y5 | | (5+6i)-(8-3i)=-3+9i | | -d/5-2=3.4 | | 8v-v+v-7v=2 | | (2x^-2.8x)/2=0 | | 3.5q−145.5=5q | | 21x-5x+6x-17x=30 | | 42-h/7=38 | | 2x^-2.8x/2=0 | | 0.2x+3.72=5 | | 2x^-2.8x=0/2 |